
Reduce, Reuse, Recycle:
Improving the Architecture

of an Existing Site

Umbraco US Festival 2024

Mary Shelley, 1831

 painting by
Samuel John Stump (1778-1863)

Attack of the

How is a Frankensite created?

1. Starting with a design-specific architecture

2. Developer turn-over combined with a constant “fire-drill”
working pace.

3. Problems fixed with band-aids

(Unintentionally)

Tedious for Editors

Problems with a Frankensite

1. Extra properties not being used

2. Unclear how to update things on the visible website

3. Obsolete “required” properties or duplicate editing efforts

Confusing for Developers

Problems with a Frankensite

1. Extra unused “stuff” everywhere (more doctypes, code
files, etc.)

2. Unclear what things are actively needed – fear of messing
up/deleting something still in use

3. Hard to fix bugs because of byzantine sprawling codebase

Inefficient

Problems with a Frankensite

1. Front-end running slowly

2. Server resources used for the storage of unneeded files,
and compiling unneeded code

3. Human time wasted wading through the muck

General Feeling of
DOOM

Getting Approval for a Cleanup Project

Challenges

1. Time and dedicated resources are needed

2. Needs to be done outside of the daily content grind

3. Might not have an obvious visible difference at the end

Use an Upgrade!

1. It’s easier to justify that it’s a big project

2. Justification to set up a separate, new environment for the
project

3. And… Maybe a visual design refresh?

Sell it

1. More stability

2. Save future dev & editor time

3. Easier, faster functional updates

Planning
the

Project

Planning the Project
1. Estimate way more time than you think you’ll need.

2. New design? Take care of that completely first before
proceeding.

3. Plan for a development pause for the live site.

4. Plan for a “Content freeze”

5. Upgrade the database copy (if doing a major version
upgrade), then copy over the code files only as needed

Cleaning Up

Look for things not in use
(Dragonfly Site Auditor)

Cleaning Up

Consolidate your Data Types

Cleaning Up

Default naming structure for a Data Type:
 Content Type Name – Property Name – Property Editor Name
 “Homepage - Top Right Blurb – Textbox”

Preferred naming structure for a Data Type:
 Property Editor Name – Something about its configuration
 “Media Picker – Single Image”
 “MNTP – Products”

Look for other areas for improvement

Cleaning Up

1. DRY (Don’t repeat yourself)

2. Numbered Properties => single “multi” property

3. Scrutinize anything named without inherent meaning
(ex: “Top-right content”)

4. Umbraco Deploy Data migrations tool

Identify and handle “legacy” properties

Cleaning Up

1. Label properties “LEGACY”

2. Place legacy properties near the “new” property, or create a
“LEGACY” group for them

3. Provide description text to guide editors to new properties

4. Use smart fall-backs in your updated Views

Rethink front-end organization

Cleaning Up

1. Perhaps utilize SASS or LESS

2. Consider your front-end framework

Check/update all the Templates

Cleaning Up

1. Go section-by-section, methodically

2. Move complex logical code out of primary view files

3. Shift errant CSS/JS into your centralized system

4. Use Resharper’s “Find Code Issues”

QA all the things

Cleaning Up

1. Tip: Install Our.FulltextSearch and let it open all the pages via HTTP.
Then check the Log for errors.

2. Have humans click around both old and new pages looking for any
visual issues as well.

Future-proofing
 Your Architecture

Future-proofing
1. Make sure properties have MEANING

2. Use Blocks for structured free-form content

3. Separation of content and design

4. Add boilerplate logging to Macro partials and any partial
views you might want to sunset.

Final Thoughts

Talk Resources:

https://HeatherFloyd.com/us-festival-2024

	Title
	Slide 1

	Body
	Slide 2: Mary Shelley, 1831 painting by Samuel John Stump (1778-1863)
	Slide 3
	Slide 4
	Slide 5: How is a Frankensite created?
	Slide 6: Tedious for Editors
	Slide 7: Confusing for Developers
	Slide 8: Inefficient
	Slide 9
	Slide 10
	Slide 11: Challenges
	Slide 12: Use an Upgrade!
	Slide 13: Sell it
	Slide 14
	Slide 15: Planning the Project
	Slide 16
	Slide 17: Look for things not in use (Dragonfly Site Auditor)
	Slide 18: Consolidate your Data Types
	Slide 19: Look for other areas for improvement
	Slide 20: Identify and handle “legacy” properties
	Slide 21: Rethink front-end organization
	Slide 22: Check/update all the Templates
	Slide 23: QA all the things
	Slide 24
	Slide 25: Future-proofing
	Slide 26

	Closing
	Slide 27

